loading

One-Stop Service, Professional Plastic Injection Molding Factory.

12 Design tips for plastic injection parts

Plastic injection molding is a popular method for producing parts and products, as it offers a range of advantages such as high efficiency, low cost, and versatility. However, achieving the best design for plastic injection parts requires careful consideration of various factors. In this article, we will provide 12 design tips for plastic injection parts to help you optimize the design process and achieve the best results.

Design Tip #1: Wall Thickness

12 Design tips for plastic injection parts 1

One of the most critical factors in the design of plastic injection parts is the wall thickness. Maintaining uniform wall thickness throughout the part is essential to ensure proper filling and packing during the molding process. Uneven wall thickness can result in warping, sink marks, and other defects. Typically, the recommended wall thickness for plastic injection parts is between 2-4mm, although this can vary depending on the material and the specific requirements of the part.

When designing the wall thickness, it is essential to consider the material flow and cooling in the mold. Thick sections of the part will take longer to cool, leading to potential shrinkage and warping. On the other hand, excessively thin walls can result in flow marks, burn marks, and other cosmetic defects. Therefore, it is important to carefully evaluate the structural requirements of the part and ensure that the wall thickness is optimized for both mechanical performance and moldability.

Design Tip #2: Rib Design

Ribs are often used in plastic injection parts to improve their stiffness and strength without adding significant weight or material. When designing ribs, it is important to maintain a proper thickness-to-height ratio to ensure that they can be filled properly during the molding process. A good rule of thumb is to design ribs with a thickness that is 60-80% of the adjacent wall thickness, and a height that is no more than 3 times the thickness.

In addition to the thickness-to-height ratio, it is important to consider the placement and orientation of the ribs to ensure that they provide the necessary reinforcement without causing flow restrictions or creating stress concentrations. Properly designed ribs should enhance the overall performance of the part without compromising its moldability or introducing potential defects.

12 Design tips for plastic injection parts 2

Design Tip #3: Draft Angles

Draft angles are essential in plastic injection molding to facilitate the ejection of the part from the mold. Without proper draft angles, the part may stick to the mold and result in production issues and defects. When designing plastic injection parts, it is important to incorporate draft angles on all vertical surfaces to ensure smooth ejection and minimize the risk of damage to the part or the mold.

The recommended draft angle for plastic injection parts is typically 1-3 degrees per side, although this may vary depending on the specific material and geometry of the part. It is important to carefully evaluate the draft requirements during the design phase and ensure that they are integrated into the part geometry without compromising its functionality or aesthetics.

Design Tip #4: Gate Placement

The gate is the point where the molten plastic is injected into the mold cavity, and its placement is crucial to the overall quality of the part. Proper gate placement can help minimize flow restrictions, reduce weld lines, and ensure uniform filling of the mold cavity. When designing plastic injection parts, it is essential to carefully consider the gate location to optimize the molding process and minimize potential defects.

The ideal gate placement will depend on various factors such as the part geometry, material properties, and production requirements. Common gate types include edge gates, tunnel gates, and hot runner systems, each of which has its own advantages and limitations. It is important to work closely with the mold designer and injection molder to determine the most suitable gate placement for the specific part and ensure that it meets the desired performance and quality standards.

Design Tip #5: Undercuts and Side-actions

Undercuts and side-actions are features that require special attention in the design of plastic injection parts, as they can complicate the molding process and increase production costs. Undercuts are features that prevent the part from being ejected straight out of the mold, while side-actions are mechanisms used to create these features in the mold.

When designing plastic injection parts with undercuts or side-actions, it is important to consider the impact on mold design, cycle time, and part cost. It may be necessary to incorporate additional mold components, such as slides, lifters, or collapsible cores, to accommodate these features and ensure that the part can be successfully molded. It is essential to work closely with the mold designer and injection molder to develop an effective solution for handling undercuts and side-actions and minimize their impact on production.

12 Design tips for plastic injection parts 3

In conclusion, the design of plastic injection parts plays a crucial role in the overall success of the molding process. By carefully considering factors such as wall thickness, rib design, draft angles, gate placement, and undercuts, it is possible to optimize the design for moldability, performance, and cost-effectiveness. Collaboration between the part designer, mold designer, and injection molder is essential to ensure that the design meets all the necessary requirements and achieves the desired quality and functionality.

In summary, successful plastic injection part design requires a thorough understanding of the molding process and the specific requirements of the part. By following the 12 design tips outlined in this article, it is possible to optimize the design for moldability, performance, and cost-effectiveness. From wall thickness and rib design to draft angles and gate placement, each aspect of the design must be carefully evaluated to ensure that the final part meets the desired quality and functionality. Through collaboration between the part designer, mold designer, and injection molder, it is possible to achieve the best results and produce high-quality plastic injection parts.

GET IN TOUCH WITH Us
recommended articles
Resources cases News
Plastic Injection Molding Quote: 5 Things You Should Provide
When it comes to manufacturing plastic components, plastic injection molding is undeniably one of the most popular and efficient methods. This process involves injecting molten plastic material into a mold where it cools and solidifies to take the desired shape. To ensure a smooth process from the beginning to the end, it's essential to provide your injection molding supplier with accurate and detailed information.



In this blog post, we'll discuss the five things you should provide when requesting a plastic injection molding quote to ensure the best possible outcome for your project.



What things should you prepare to obtain a plastic injection molding quote:




1. 2D or 3D Design Drawings or Samples



2. The Material and Color Requirements of the Product



3. Quantity Requirements and Delivery Time of the Product



4. The Surface Requirements of the Product



5. Other special requirements
The 10 common plastic injection molding materials
Plastic injection molding is a widely used manufacturing process that involves injecting molten plastic material into a mold to create a specific shape or product. One of the key factors that determine the success of this process is the choice of the right plastic material for the desired application. With so many options available, it can be overwhelming to select the right material for your project. In this blog, we will discuss the 10 common plastic injection molding materials, their properties, and their applications. Whether you are a product designer, engineer, or manufacturer, this blog will provide you with valuable insights into the different plastic materials available and help you make informed decisions. So, let's dive in and explore the world of plastic injection molding materials!
Injection Molding vs. Compression Molding: A Comprehensive Comparison
Injection molding and compression molding are two popular methods used for manufacturing plastic parts. While both techniques are used to create high-quality plastic parts, there are some key differences between the two that make them better suited for different applications. In this blog, we will explore the differences between injection molding and compression molding, their advantages and disadvantages, and the typical applications for each technique.
How to Optimize Injection Molding Design with Mold Flow Analysis
Injection molding is a widely used manufacturing process for producing plastic parts, ranging from everyday consumer products to complex components in various industries. The efficiency and accuracy of the injection molding process depend heavily on the design of the mold and the material used. To achieve the best possible results, it is essential to optimize the design using advanced techniques such as mold flow analysis. In this blog, we will discuss the factors affecting injection molding design, the benefits of optimization with mold flow analysis, the steps involved in the process, and the techniques used in mold flow analysis.
Mold Maintenance Guide
Molds are an essential part of the manufacturing process for countless products. They are used to create everything from plastic enclosure to automotive parts to medical devices, and much more. However, molds can be expensive and time-consuming to produce, making it essential that they are properly maintained to ensure a long and productive life.
What is Cooling System in Injection Molding?
Injection molding is a manufacturing process widely used for producing parts in large volumes. It involves the use of a high-pressure injection molding machine to force molten plastic material into a mold cavity, where it cools and solidifies into the desired part shape. The process is commonly used for manufacturing a wide range of products, including automotive components, consumer goods, and medical devices.
What is Insert Molding? A Comprehensive Guide
Insert molding is a widely used manufacturing process that has revolutionized the way various industries produce their products. This blog will explore the concept of insert molding, its benefits, applications, and the step-by-step process involved. By the end of this read, you will have a deep understanding of insert molding and its significance in the manufacturing world.
Injection Molding vs. Extrusion: A Comprehensive Comparison

In the world of manufacturing, two of the most popular methods for producing plastic parts are injection molding and extrusion. Both processes have their unique advantages and disadvantages, and are suitable for different applications. In this blog, we will explore the key aspects of injection molding and extrusion, comparing the two processes, and providing guidance on which method to choose based on specific requirements.
A Guide for Injection Mold Venting Design

Injection molding is a widely used manufacturing process that involves injecting molten material into a mold cavity to create a desired shape. One crucial aspect of the injection molding process is the venting of air and gases from the mold cavity. In this blog, we will explore the importance of proper venting, key factors to consider in venting design, and best practices for effective venting.
Die Casting: Understanding the Process, Advantages, Applications, and Material

Die casting is a metal casting process that involves injecting molten metal under high pressure into a mold cavity. The mold cavity is created using a pair of hardened steel dies, which have been machined into the desired shape. This process produces parts with complex geometries and tight tolerances, making it a popular choice for manufacturing a wide range of components.
no data

+86 13433648351

Operating hours
Guangdong Jingshijingmo Technology Co.,Ltd, Founded in 2015 years, which located in DongGuan city, GuangDong. Our main product is plastic molds and plastic products. Our subsidiary manufactures electronic connectors and hardware products.
Contact with us
Contact person:
Jerry Hu Sales Manager Jerry Hu
WhatsApp: +86 13433648351
Add:
No. 269, Yangkeng Road, Qiaoli Village, Changping Town, Dongguan, Guangdong, China
Copyright © 2025 Guangdong Jingshijingmo Technology Co., Ltd - lifisher.com | Sitemap
Customer service
detect