loading

One-Stop Service, Professional Plastic Injection Molding Factory.

3-axis, 4-axis, and 5-axis CNC machining: what is the difference?

CNC (Computer Numerical Control) machining is a manufacturing process that involves the use of computer software to control and operate machine tools. This technology has revolutionized the manufacturing industry by allowing for more precise and efficient production of parts and components. One of the key features of CNC machining is the ability to control the movement of the cutting tool in multiple axes, with 3-axis, 4-axis, and 5-axis machines being the most commonly used. In this article, we will discuss the differences between these three types of CNC machines and their respective advantages and disadvantages.

3-axis CNC machining

3-axis, 4-axis, and 5-axis CNC machining: what is the difference? 1

3-axis CNC machining refers to a milling machine that can move the cutting tool in three separate axes: X, Y, and Z. This means that the cutting tool can move in three directions – left and right (X-axis), forward and backward (Y-axis), and up and down (Z-axis). This type of machine is commonly used for producing simple, flat parts that do not require complex geometries or contours.

While 3-axis CNC machines are limited in their ability to produce intricate shapes and surfaces, they are often more affordable and easier to operate than their 4-axis and 5-axis counterparts. Additionally, 3-axis machines are well-suited for the production of parts with holes, pockets, and other features that can be easily machined from multiple sides.

One of the main advantages of 3-axis CNC machining is its versatility and efficiency in producing large quantities of parts with relatively simple geometries. For manufacturers that primarily produce parts with flat surfaces and straight edges, a 3-axis machine may be the most cost-effective option.

However, one of the limitations of 3-axis machining is its inability to access certain parts of a workpiece, leading to restrictions in the types of geometries that can be produced. This can result in longer machining times and the need for additional setups and operations to achieve the desired part geometry.

In conclusion, 3-axis CNC machining is a cost-effective and efficient option for producing parts with simple geometries. However, its limitations in producing complex shapes and surfaces may make it less suitable for certain manufacturing applications.

3-axis, 4-axis, and 5-axis CNC machining: what is the difference? 2

4-axis CNC machining

4-axis CNC machining expands on the capabilities of 3-axis machines by adding an additional rotary axis to the cutting tool. In addition to the X, Y, and Z axes, a 4-axis machine can also rotate the cutting tool about a fourth axis, typically referred to as the A-axis. This allows for more versatile machining operations, including the ability to produce cylindrical and curved surfaces.

One of the main advantages of 4-axis CNC machining is its ability to produce complex, three-dimensional parts with greater ease and efficiency than 3-axis machines. The addition of a rotary axis enables the cutting tool to access multiple sides of a workpiece without the need for repositioning, resulting in reduced machining times and improved accuracy.

The rotary axis in 4-axis CNC machines is often used for indexing the workpiece to achieve machining operations on multiple sides, such as milling pockets, holes, and other features that require access from various angles. This capability is especially valuable for the production of parts with intricate geometries, such as molds, dies, and prototypes.

Another advantage of 4-axis CNC machining is its ability to perform continuous or simultaneous machining operations, known as 4-axis contouring. This allows the cutting tool to move along both the X, Y, and Z axes, as well as the rotary A-axis, to produce complex surfaces and contours with smooth transitions.

However, one of the challenges of 4-axis CNC machining is the complexity of programming and toolpath generation. The addition of the rotary axis introduces more variables and considerations in the machining process, requiring advanced CAD/CAM software and a high level of expertise to optimize the cutting tool's movement.

In summary, 4-axis CNC machining offers significant advancements in the production of complex, three-dimensional parts compared to 3-axis machines. The addition of a rotary axis enables more versatile machining operations and greater efficiency in producing intricate geometries.

5-axis CNC machining

5-axis CNC machining represents the pinnacle of CNC milling technology, offering the most advanced capabilities for producing complex parts with unprecedented precision and efficiency. In addition to the X, Y, and Z axes, a 5-axis machine incorporates two rotary axes – typically referred to as the A and B axes – that enable the cutting tool to tilt and rotate in multiple directions.

The primary advantage of 5-axis CNC machining is its ability to access all sides of a workpiece with a single setup, allowing for complete machining operations in a single operation. This eliminates the need for repositioning and multiple setups, resulting in significantly reduced machining times and improved accuracy.

The simultaneous movement of the cutting tool along five axes enables 5-axis CNC machines to produce highly complex geometries, such as freeform surfaces, organic shapes, and intricate contours, with unparalleled precision and quality. This makes 5-axis machining ideal for the production of aerospace components, automotive parts, medical devices, and other high-precision applications.

Another key advantage of 5-axis CNC machining is its ability to perform continuous 5-axis contouring, allowing the cutting tool to follow complex toolpaths and produce smooth, uninterrupted surfaces with minimal tool marks and machining lines. This capability is essential for achieving the stringent surface finish and tolerances required in advanced manufacturing.

However, the complexity and sophistication of 5-axis CNC machining also present challenges, including the need for advanced CAD/CAM software, high-precision machine tools, and skilled operators. The programming and optimization of toolpaths for 5-axis machining require a deep understanding of complex geometry, kinematics, and cutting strategies to maximize the machine's capabilities.

3-axis, 4-axis, and 5-axis CNC machining: what is the difference? 3

In conclusion, 5-axis CNC machining represents the pinnacle of CNC milling technology, offering unparalleled capabilities for producing complex parts with unprecedented precision and efficiency. Its ability to access all sides of a workpiece with a single setup and perform continuous 5-axis contouring makes it the ideal choice for high-precision manufacturing applications.

In summary, CNC machining technology has evolved to encompass 3-axis, 4-axis, and 5-axis machines, each offering distinct advantages and capabilities for producing parts and components with varying levels of complexity and precision. While 3-axis machines are well-suited for simple, flat parts, 4-axis machines expand the capabilities to produce more complex geometries, and 5-axis machines represent the pinnacle of CNC milling technology, offering unprecedented precision and efficiency for high-precision applications. As manufacturing continues to advance, the choice of CNC machine will depend on the specific requirements of the parts being produced, as well as the desired levels of complexity, precision, and efficiency.

GET IN TOUCH WITH Us
recommended articles
Resources cases News
Thermoplastic Elastomer - TPU

TPU Material — A Preferred Elastomer from the plastic injection molding manufacturer Perspective
TPU Material Definition and Basic Concepts
Thermoplastic polyurethane (TPU) is a class of high-performance polymers that combines the properties of plastic and rubber. It softens and flows under heat and regains elasticity upon cooling. TPU features excellent wear resistance, oil resistance, weather resistance, and elasticity, making it widely used across various industries. When selecting suitable plastics or elastomers, engineers often conduct an injection molding plastics comparison, evaluating TPU against other materials (such as PP, PE, PA) in terms of processing behavior, mechanical performance, and cost, highlighting its unique advantages.
What is PPO

What is PPO? — Its Widespread Applications in medical injection molding and plastic injection components
PPO (Polyphenylene Oxide) is a high-performance engineering plastic known for its excellent thermal stability, electrical insulation, and dimensional stability. In the production of medical injection molding, automotive injection, injection moulding large parts, and various plastic injection components, PPO, with its outstanding overall performance, meets the stringent requirements of high temperature, high strength, and high precision in medical, automotive, and industrial fields. Below, we will provide a comprehensive analysis of PPO material's definition, properties, and typical applications, combining the original descriptions with specific data.
Silicone injection molding parts

Silicone Injection Molding is an advanced process that combines the characteristics of thermoset elastomers with high-precision injection technology. Through the injection moulding process step by step, either liquid or solid silicone is injected into molds under high pressure and temperature, then rapidly cured. This method is widely used in plastic injection components and medical device injection molding. Silicone offers the elasticity of rubber and the processing efficiency of plastic, ensuring short molding cycles, high dimensional precision, and excellent weather resistance and biocompatibility. It is ideal for manufacturing baby pacifiers, sealing rings, electronic buttons, and more.
plastic injection mold design

In modern manufacturing, plastic injection mold design is the critical process for achieving efficient, precise, and repeatable production. Through well-considered mold structure and process design, defects can be minimized, productivity increased, and manufacturing costs reduced.
Injection Molding Material Selection Guide 2

This guide is intended to provide readers with a comprehensive comparison of six commonly used thermoplastic materials for injection molding: PP, PE, PET, PA, PC, and PS. From definitions, mechanical properties, and application scenarios to the impact on finished product performance, we aim to help decision-makers across industrial molding corporation, injection mold inc, moulding maker, and other sectors select the optimal material. Real-world use cases in custom plastic parts, plastic parts manufacturing, medical device injection molding, and automotive injection are included to support informed, practical decisions.
injection molding material selection guide

In injection molding projects, the choice of material directly determines product performance, durability, safety, and cost. Especially in high-demand sectors like automotive injection and medical device molding, materials must not only meet basic requirements such as mechanical strength or chemical resistance but also comply with industry-specific standards such as biocompatibility, flame retardancy, or heat resistance. JSJM, as an experienced moulding maker and plastic parts manufacturing solution provider, presents this guide to help you fully understand the advantages and applications of six mainstream injection materials: Tritan™, ABS, POM, PMMA, PVC, and PPO.
Injection Molding Plastics Comparison

In industrial manufacturing, material selection plays a critical role in determining product performance, durability, and cost efficiency. This article focuses on injection molding plastics comparison, offering an in-depth comparison of six engineering-grade plastics: PVDF, PCTFE, UHMWPE, PSU, PFA, and PPS. From material properties and molding characteristics to practical applications—especially in medical device molding and plastic parts manufacturing—we provide a comprehensive selection guide to assist your engineering decisions.
What is Overmolding

Overmolding, also known as multi-shot molding or soft-touch molding, is a high-performance, integrated injection molding process used to combine two or more different plastic materials into a single, functional component. As multi-material technology and mold-making capabilities have evolved, Overmolding has been widely applied across custom plastic parts, medical device molding, plastic parts manufacturing, and medical plastic molding, becoming a key technique in precision manufacturing.
large part injection molding

In the modern plastics processing industry, large part injection molding refers to the injection molding of components that exceed typical size or weight ranges. Compared to small or medium-sized plastic parts, large part injection molding requires higher standards for machine tonnage, mold structure, and injection process control.

This technique is widely used in industries such as automotive, medical, aerospace, and construction to produce large housings, structural parts, and functional components. By optimizing process parameters and mold design, large part injection molding ensures dimensional accuracy and mechanical performance, meeting the demands of high-end applications.
Automotive Injection

In modern automobile manufacturing, automotive injection plays a critical role. It covers the production of components ranging from small connectors to large structural parts, all requiring high precision and performance. This article explores key technologies, material selection, industrial distribution, certification requirements, and differences from other industries, offering you a comprehensive understanding of this field.
no data

+86 13433648351

Operating hours
Guangdong Jingshijingmo Technology Co.,Ltd, Founded in 2015 years, which located in DongGuan city, GuangDong. Our main product is plastic molds and plastic products. Our subsidiary manufactures electronic connectors and hardware products.
Contact with us
Contact person:
Jerry Hu Sales Manager Jerry Hu
WhatsApp: +86 13433648351
Add:
No. 269, Yangkeng Road, Qiaoli Village, Changping Town, Dongguan, Guangdong, China
Copyright © 2025 Guangdong Jingshijingmo Technology Co., Ltd - lifisher.com | Sitemap
Customer service
detect